6 research outputs found

    Cosmological interpretation of the color-magnitude diagrams of galaxy clusters

    Full text link
    We investigate the color-magnitude diagram (CMD) of cluster galaxies in the hierarchical Λ\Lambda-CDM cosmological scenario using both single stellar populations and simple galaxy models. First, we analyze the effect of bursts and mergers and companion chemical pollution and rejuvenation of the stellar content on the integrated light emitted by galaxies. The dispersion of the galaxy magnitudes and colors on the MV−(B−V)M_V-(B-V) plane is mainly due to mixing of ages and metallicities of the stellar populations, with mergers weighting more than bursts of similar mass fractions. The analysis is made using the Monte-Carlo technique applied to ideal model galaxies reduced to single stellar populations with galaxy-size mass to evaluate mass, age and metallicity of each object. We show that separately determining the contributions by bursts and mergers leads to a better understanding of observed properties of CMD of cluster galaxies. Then we repeat the analysis using suitable chemo-photometric models of galaxies whose mass is derived from the cosmological predictions of the galaxy content of typical clusters. Using the halo mass function and the Monte-Carlo technique, we derive the formation redshift of each galaxy and its photometric history. These are used to simulate the CMD of the cluster galaxies. The main conclusion is that most massive galaxies have acquired the red color they show today in very early epochs and remained the same ever since. The simulations nicely reproduce the Red Sequence, the Green Valley and the Blue Cloud, the three main regions of the CMD in which galaxies crowd.Comment: Accepted for publication in Ap

    The parallelism between galaxy clusters and early-type galaxies: I. The light and mass profiles

    Get PDF
    We have analyzed the parallelism between the properties of galaxy clusters and early-type galaxies (ETGs) by looking at the similarity between their light profiles. We find that the equivalent luminosity profiles of all these systems in the \vfilt\ band, once normalized to the effective radius \re\ and shifted in surface brightness, can be fitted by the S\'ersic's law \Sers\ and superposed with a small scatter (≤0.3\le0.3 mag). By grouping objects in different classes of luminosity, the average profile of each class slightly deviates from the other only in the inner and outer regions (outside 0.1≤r/Re≤30.1\leq r/R_e\leq 3), but the range of values of nn remains ample for the members of each class, indicating that objects with similar luminosity have quite different shapes. The "Illustris" simulation reproduces quite well the luminosity profiles of ETGs, with the exception of in the inner and outer regions where feedback from supernovae and active galactic nuclei, wet and dry mergers, are at work. The total mass and luminosity of galaxy clusters as well as their light profiles are not well reproduced. By exploiting simulations we have followed the variation of the effective half-light and half-mass radius of ETGs up to z=0.8z=0.8, noting that progenitors are not necessarily smaller in size than current objects. We have also analyzed the projected dark+baryonic and dark-only mass profiles discovering that after a normalization to the half-mass radius, they can be well superposed and fitted by the S\'ersic's law.Comment: 25 pages, 19 figure

    The parallelism between galaxy clusters and early-type galaxies: II. Clues on the origin of the scaling relations

    Full text link
    Context. This is the second work dedicated to the observed parallelism between galaxy clusters and early-type galaxies. The focus is on the distribution of these systems in the scaling relations (SRs) observed when effective radii, effective surface brightness, total luminosities and velocity dispersions are mutually correlated. Aims. Using the data of the Illustris simulation we try to speculate on the origin of the observed SRs. Methods. We compare the observational SRs extracted from the database of the WIde-field Nearby Galaxy-cluster Survey (WINGS) with the relevant parameters coming from the Illustris simulations. Then we use the simulated data at different redshift to infer the evolution of the SRs. Results. The comparison demonstrate that galaxy clusters (GCs) at z~0 follow the same log(L)-log(sigma) relation of early-type galaxies (ETGs) and that both in the log(Ie)-log(Re) and log(Re)-log(M*) planes the distribution of GCs is along the sequence defined by the brightest and massive early-type galaxies (BCGs). The Illustris simulation reproduces the tails of the massive galaxies visible both in the log(Ie)-log(Re) and log(Re)-log(M*) planes, but fail to give the correct estimate of the effective radii of the dwarf galaxies that appear too large and those of GCs that are too small. The evolution of the SRs up to z=4 permits to reveal the complex evolutionary paths of galaxies in the SRs and indicate that the line marking the Zone of Exclusion (ZoE), visible both in the log(Ie)-log(Re) and log(Re)-log(M*) planes, is the trend followed by virialized and passively evolving systems. Conclusions. We speculate that the observed SRs originate from the intersection of the virial theorem and a relation L=L_0 x sigma^beta where the luminosities depend on the star formation history.Comment: 22 pages, 14 figures, 4 table

    Cosmic Star Formation: a simple model of the SFRD(z)

    Full text link
    We investigate the evolution of the cosmic star formation rate density (SFRD) from redshift z=20 to z=0 and compare it with the observational one by Madau and Dickinson derived from recent compilations of UV and IR data. The theoretical SFRD(z) and its evolution are obtained using a simple model which folds together the star formation histories of prototype galaxies designed to represent real objects of different morphological type along the Hubble sequence and the hierarchical growing of structures under the action of gravity from small perturbations to large scale objects in \Lambda-CDM cosmogony, i.e. the number density of dark matter halos N(M,z). Although the overall model is very simple and easy to set up, it provides results that well mimic those obtained from large scale N-body simulations of great complexity. The simplicity of our approach allows us to test different assumptions for the star formation law in galaxies, the effects of energy feedback from stars to interstellar gas and the efficiency of galactic winds, and also the effect of N(M,z). The result of our analysis is that in the framework of the hierarchical assembly of galaxies the so-called time-delayed star formation under plain assumptions mainly for the energy feedback and galactic winds can reproduce the observational SFRD(z).Comment: ApJ (accepted for publication

    Sub-Decimeter Onboard Orbit Determination of LEO Satellites Using SSR Corrections: A Galileo-Based Case Study for the Sentinel-6A Satellite

    No full text
    In GNSS-based navigation onboard Low Earth Orbit (LEO) satellites, typical accuracy requirements are 10 cm and 0.1 mm/s for 3D position and velocity, respectively. Previous works have shown that such performance is achieved by including Galileo measurements in the estimation process. Here, we aim to evaluate the impact of employing State Space Representation (SSR) corrections, i.e., GNSS satellite orbit, clock, and biases, to be applied to the broadcast ephemerides. In this framework, the Precise Onboard Orbit Determination (P2OD) software (SW) tool developed at the University of Padua (UNIPD) is used to investigate the needs of onboard navigation. The UNIPD SW employs an Extended Kalman Filter (EKF) using a reduced-dynamics approach. The force model implemented is adapted to onboard processing, and empirical accelerations are included to take into account residual force mismodeling. Actual observation data from the LEO Sentinel-6A satellite are processed along with SSR corrections from the CNES service. Galileo-based solutions are compared to ground-based POD reference orbits. The analysis suggests that the use of SSR corrections provides sub-decimeter and below 0.1 mm/s accuracies in 3D position and velocity, respectively. Such results indicate a P2OD solution quality close to that achievable by adopting precise orbits and clocks
    corecore